
ChE-304 Problem Set 6
Week 7

Problem 1
The Margules model represents the excess Gibbs energy for a binary mixture as a simple 
function of the mole fraction of each component multiplied by an empirical parameter:

GE/RT=A x1 x2

From this model, could you derive a formula that describes the activity coefficient of 
substance 1 (i.e. γ1) in a mixture with just two components (1 and 2)? 

Solution

We use the formula that we saw in class: 

RTlnγ α=Gα
E= ∂
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∂nα [(∑k nk) (f ( xα , xβ ,…,T ))]

and replace f (xα , xβ ,…,T ) by our model.
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Problem 2

Last week, we came up with the following flowsheet and specifications for the slingshot 
process:

Assume that we specify T2. We can also assume that the pump is a reversible adiabatic 
compression. Do we have enough information to fully characterize this system?

Recall that the total number of required specifications for independent streams is:

N specifications=N streams ,Q+N streams ,W el
+2 N❑streams ,W mech

+N streams ,material (2+N c ) 

Solution:

The number of required specifications are:

N specifications=N streams ,Q+N streams ,W el
+2 N❑streams ,W mech

+N streams ,material (2+N c )=5+1+7∗(2+1 )=27

How many specifications have we made?

Stream a: 3
Stream b: 2
Stream c: 2 (temperature and saturation conditions, which sets the pressure)
Stream d: -
Stream e: 2 (saturation T° at P1)
Stream f: 2 (boiling water at P1)
Stream g: 2 (T2 and P1)
Stream j: 1
Streams h, i, k, l, m: -

Total: 14

We are missing 13 specifications. However, this is for isolated streams. We have unit 
relations that will reduce the number of required specifications.

For each unit we have a mass and energy balance:



6 units*2 balances = 12 equations

For the pump, we also have the relation for isentropic (= reversible adiabatic) 
compression  1 extra equation!

Therefore, this will reduce the number of required specifications by 12+1=13, meaning 
our system is fully specified!



Problem 3

Last week, we started analyzing the Slingshot process by drawing a flowsheet and by 
calculating the temperature and pressure of the fluid after compression. 

At this temperature and pressure, is the fluid in its liquid or vapor phase? Once you have 
determined the phase, you can calculate the enthalpy and entropy of the fluid at this 
temperature. 

Coefficients needed for the Antoine equation and the Cp equation of water and the 
standard enthalpy and entropy are shown below (from the NIST webbook). 

Antoine’s equation:

CP (T )=Aα+BαT +CαT
2+DαT

3+
Eα

T 2  ,  where T= temperature∈K
1000

Antoine’s parameters, valid 370-573K:
A = 3.55959 B = 643.748 C = -198.043

Cp equation coefficients, vapor phase:
A = 30.092 B = 6.832514 C = 6.793435 D = -2.53448 E = 0.082139

Standard enthalpy and entropy, vapor phase:
Standard enthalpy, kJ/mol = -241.83 Standard entropy, J/molK = 188.84

Cp equation coefficients, liquid phase:
A = -203.6060 B = 1523.290 C = -3196.413 D = 2474.455 E = 3.855326  

Standard entropy, liquid phase, J/molK = 69.95
Enthalpy of vaporization, water at 100C, kJ/mol = 40.6
Critical temperature, pressure of water: 647.3K, 221.2 bar

Solution:

(From last week’s solution: T = 430.7 K, P = 1.836 atm or 1.86 bar)

First, using the Antoine equation:

log10 (Psat , α )=Aα−
Bα

T sat , α+Cα
  (Equation 2.4 in the notes)

log10 (Psat , α )=3.55959− 643.748
430.7−198.043  

Psat , α=6.20369 ¿̄ 



At this temperature, saturation pressure is 6.2 bar. Since our pressure is lower, we know 
our fluid is in The vapor phase. 

Thus, we use the vapor phase Cp coefficients to determine enthalpy and entropy at this 
temperature from H 0 and S0.

We know that  CP (T )=Aα+BαT +CαT
2+DαT

3+
Eα

T 2  , where T= temp
1000

And dH=CpdT ,
So,
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3−T 0
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Plugging values in, 

∆ H=(30.092 )∗( 431−298 )+
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1000

∗( 4312−2982 )

2
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3
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4
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− 1

298 )
∆ H=4.508 kJ /mol 

Thus, 
H 430.7=H 298.15+ΔH=−241.83+4.508

H 430.7=−237.3 kJ /mol 

Now, let look at entropy. We know that 
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T
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P
dP 
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T 1 C p

T
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P0

P1 R
P
dP 

∆ Sα=[ Aα ln (T 1

T 0 )+
Bα
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10002 (T 1
2−T 0

2 )
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2 ( 1
T 1
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T 0

2 )]−[R∗ln( P1

P0 )]
Plugging values (T1 = 431 K, T0=298 K, P1=1.86 bar, P0=1 bar) in and solving, 

∆ S=7.338J /(K mol) 



Thus, 
S430.7=S298.15+Δ S=188.84+7.34

S430.7=196.18 J /(Kmol) 


